A Note on the Mean Convergence of Lagrange Interpolation

M. Kuetz
Lehrstuhl E fuer Mathematik, Technische Universitaet Braunschweig, 3300 Braunschweig, West Germany
Communicated by Paul G. Nevai

Received March 6, 1981

1. The Results

Let w be a weight function defined on $(-1,+1)$ and let $p_{n}(w, \cdot)$, $n=0,1,2, \ldots$, be the corresponding sequence of orthonormal polynomials with positive leading coefficient. For $f \in C[-1,+1]$ let $L_{n}(w, f)$ be the Lagrange interpolation polynomial of degree at most $n-1$ coinciding with f at the zeros of $p_{n}(w, \cdot)$ and let $L_{n}^{*}(w, f)$ be the Lagrange interpolation polynomial of degree at most $n+1$ coinciding with f at the zeros of the polynomial $p(t)=\left(t^{2}-1\right) p_{n}(w, t)$. Further, let $w\left(\alpha, \beta^{\prime}\right)$ be a Jacobi weight with $\alpha, \beta>-1$ and \tilde{w} a generalized Jacobi weight as defined in [3]. If $v \geqslant 0$ is an integrable and not almost everywhere vanishing function, then for $0<p<\infty$ a distance on the space C_{v}^{p} is given by

$$
d(f, g)_{v, p}=\left[\int_{-1}^{+1}|f(t)-g(t)|^{p} v(t) d t\right]^{1 / \max (1, p)}
$$

R. Askey [1], G. P. Nevai [3] and P. Vertesi [7] have intensively studied the behavior of $d\left(L_{n}(w, f), f\right)_{v, p}$. Their results will be used to prove the following theorems on the behavior of $d\left(L_{n}^{*}(w, f), f\right)_{v, p}$.

Theorem 1. (a) Let $w=\tilde{w}(\alpha, \beta)$ and $v=u \cdot w(a, b)$ where u^{e} is integrable for some $\varepsilon>1$ and u is bounded in some neighborhoods of -1 and +1 . For every $f \in C[-1,+1]$ we have

$$
\lim _{n \rightarrow \infty} d\left(L_{n}^{*}(w, f), f\right)=0
$$

if
(i) $-1<\alpha, \beta \leqslant \frac{3}{2}, \quad a, b>-1, \quad p>0$,
(ii) $-1<\beta \leqslant \frac{3}{2}, \quad \alpha>\frac{3}{2}, \quad b>-1, \quad 2 a>\alpha-\frac{7}{2}$,

$$
0<p<\frac{4(a+1)}{2 \alpha-3}
$$

(iii) $-1<\alpha \leqslant \frac{3}{2}, \quad \beta>\frac{3}{2}, \quad a>-1, \quad 2 b>\beta-\frac{7}{2}$,

$$
0<p<\frac{4(b+1)}{2 \beta-3}
$$

(iv) $\min (\alpha, \beta)>\frac{3}{2}, \quad 2 a>\alpha-\frac{7}{2}, \quad 2 b>\beta-\frac{7}{2}$,

$$
0<p<\min \left\{\frac{4(a+1)}{2 \alpha-3}, \frac{4(b+1)}{2 \beta-3}\right\}
$$

(b) Conversely, if $\lim _{n \rightarrow \infty} d\left(L_{n}^{*}(w, f), f\right)=0$ for all $f \in C_{v}^{p}$, then $\alpha>\frac{3}{2}$ (resp. $\beta>\frac{3}{2}$) and the boundedness of u^{-1} in a neighborhood of +1 (resp. -1) implies $p \leqslant 4(a+1) /(2 \alpha-3)$ (resp. $p \leqslant 4(b+1) /(2 \beta-3))$.
(c) Further, for every weight w there exists a function $f \in C[-1,+1]$ and an integrable v such that for every $p>0 L_{n}^{*}(w, f)$ does not converge to f in C_{v}^{p}.

It would be desirable to say something about the extreme cases $p=$ $4(a+1) /(2 \alpha-3)$ or $p=4(b+1) /(2 \beta-3)$. This is possible in the case $w=w(\alpha, \beta)$ and $v=w(a, b)$ with the help of

Theorem 2. For $\alpha>\frac{3}{2}$ (resp. $\beta>\frac{3}{2}$) and $p \geqslant 4(a+1) /(2 \alpha-3)$ (resp. $p \geqslant 4(b+1) /(2 \beta-3))$ there exists a continuous function f such that $d\left(L_{n}^{*}(w, f), f\right)_{v, p}$ does not converge to 0 .

Remark. A. K. Varma and P. Vertesi [6] have proved the following special cases of our Theorem 1: $w \in\left\{w\left(\frac{1}{2}, \frac{1}{2}\right), w\left(\frac{3}{2}, \frac{3}{2}\right), w\left(-\frac{1}{2}, \frac{1}{2}\right), w\left(-\frac{1}{2}, \frac{3}{2}\right)\right\}$ with $v=w\left(-\frac{1}{2},-\frac{1}{2}\right)$.

2. The Proofs

To prove our theorems we have only to give a suitable representation of the interpolation error. Thereafter results of Nevai [3] and Vertesi [7] can easily be applied. Let $\chi_{1}, \chi_{2}, \ldots, \chi_{n}$ be the zeros of $p_{n}(w, \cdot)$ and let $f\left(\cdot, \chi_{1}, \chi_{2}, \ldots, \chi_{n},-1,+1\right)$ be the $(n+2)$ th divided difference with the nodes $\chi_{1}, \chi_{2}, \ldots, \chi_{n},-1,+1$. Then by Newton's interpolation formula (see [5], p. 22) the error can be represented by

$$
\begin{equation*}
L_{n}^{*}(w, f, t)-f(t)=f\left(t, \chi_{1}, \chi_{2}, \ldots, \chi_{n},-1,+1\right) \cdot\left(t^{2}-1\right) \cdot \prod_{i=1}^{n}\left(t-\chi_{i}\right) \tag{1}
\end{equation*}
$$

Put $f^{*}=f(\cdot,-1,+1)=f_{1}-f_{2}$ with

$$
f_{1}(t)=\frac{1}{2} \frac{f(t)-f(1)}{t-1} \quad \text { and } \quad f_{2}(t)=\frac{1}{2} \frac{f(t)-f(-1)}{t+1}
$$

where $f(\cdot,-1,+1)$ is the second divided difference of f to -1 and +1 . This immediately gives

$$
\begin{equation*}
d\left(L_{n}^{*}(w, f), f\right)_{v, p}=d\left(L_{n}\left(w, f^{*}\right), f^{*}\right)_{\bar{i}, p} \tag{2}
\end{equation*}
$$

with $\tilde{v}(t)=\left(1-t^{2}\right)^{p} \cdot v(t)$, and thus Theorem lb can easily be proven by application of [3, Theorem $2(\mathrm{i})]$.

To prove Theorem lc we start with the note that the statement there can be generalized to any sequence (L_{n}) of bounded linear projection operators. Suppose that for every $f \in C[-1,+1]$ and integrable v there is a $p>0$ with

$$
\lim _{n \rightarrow \infty} d\left(L_{n}(f), f\right)=0
$$

which by the Banach-Steinhaus theorem is equivalent to the uniform boundedness of

$$
\sup _{\|v\|_{1}=1} \int_{-1}^{1}\left|L_{n}(f, t)\right|^{p} v(t) d t=\left\|\left|L_{n}(f)\right|^{p}\right\|_{C},
$$

but this is a contradiction to the well known Harsiladze-Lozinski theorem. Hence for the proof of Theorem 1c put $L_{n}=L_{n}^{*}(w, \cdot)$.

Theorem 2 is proven with the help of the theorem in [7]. To prove Theorem 1a we will need the following

Theorem [4, Theorem 9.25, p. 168]. Let $1 \leqslant p<\infty$ and let P be a polynomial of degree $m \leqslant$ const. n. If $w \sim w(\alpha, \beta)$ (that means $0<c_{1} \leqslant$ $\left.w /(w(\alpha, \beta)) \leqslant c_{2}\right)$ and $u(t)=(1-t)^{\delta}(1+t)^{\gamma} \in L_{w}^{1}$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{G}(w) u\left(\chi_{i}\right)\left|P\left(\chi_{i}\right)\right|^{p} \leqslant \mathrm{const} \cdot \int_{-1}^{+1}|P(t)|^{p} u(t) w(t) d t
$$

where $\lambda_{i}^{G}(w), i=1,2, \ldots, n$ are the weights of the Gauss quadrature formula with the nodes $\chi_{i}, i=1,2, \ldots, n$, and weight function w.

Now let $S_{n-1}(w, f)$ be the nth partial sum of the Fourier series expansion
of f by the polynomials $p_{k}(w, \cdot), k=0,1,2, \ldots$ By the Banach-Steinhaus theorem and the inequality

$$
d\left(L_{n}^{*}(w, f), f\right)_{v, p} \leqslant \text { const } \cdot d\left(L_{n}^{*}(w, f), f\right)_{v, 1} \quad \text { for } \quad 0<p<1
$$

it suffices to investigate the boundedness of $\left\|L_{n}^{*}(w, \cdot)\right\|_{v, p}(p \geqslant 1)$ which by (2) and the inverse of Hölder's inequality is equivalent to

$$
\begin{align*}
& \sup _{\|f\|_{c}=1} \sup _{\|\xi\|_{\tilde{v}, q}=1} \int_{-1}^{1} L_{n}\left(w, f^{*}, t\right) g(t) \tilde{v}(t) d t \\
& \quad \text { with } \quad p^{-1}+q^{-1}=1 . \tag{3}
\end{align*}
$$

Four cases have to be considered:
(i) $\max (\alpha, \beta) \leqslant 0$,
(ii) $\alpha>0, \beta \leqslant 0$,
(iii) $\beta>0, \alpha \leqslant 0$,
(iv) $\min (\alpha, \beta)>0$.
(i) In this case we use $f^{*}=f_{1}-f_{2}$ and treat the integrals

$$
\int_{-1}^{+1} L_{n}\left(w, f_{j}, t\right) g(t) \tilde{v}(t) d t \quad(j=1,2)
$$

Put $w_{1}(t)=(1+t) w(t)$ and $w_{2}=(1-t) w(t)$. Then the integrals become

$$
\int_{-1}^{+1} L_{n}\left(w, f_{j}, t\right)(1 \pm t) S_{n-1}\left(w_{j}, \frac{g \tilde{v}}{w_{j}}, t\right) w(t) d t
$$

where the positive sign belongs to $j=1$ and the negative sign belongs to $j=2$. The integrand is a polynomial of degree at most $2 n-1$ and thus Gauss quadrature gives

$$
\sum_{i=1}^{n} \lambda_{i}^{G}(w)\left(1 \pm \chi_{i}\right) f_{j}\left(\chi_{i}\right) S_{n-1}\left(w_{j}, \frac{g \tilde{v}}{w_{j}}, \chi_{i}\right)
$$

Now $\|f\|_{C}=1$ implies $\left\|(1 \pm t) f_{j}(t)\right\|_{C} \leqslant 1$ and the quoted theorem of Nevai for $u \equiv 1$ gives the upper bound

$$
\begin{equation*}
\text { const } \cdot \sup _{\|G\|_{c}=1} \int_{-1}^{+1} S_{n-1}\left(w_{j}, \frac{g \tilde{v}}{w_{j}}, t\right) G(t) w(t) d t \tag{4}
\end{equation*}
$$

Putting $G_{1}(t)=G(t) /(1+t)$ and $G_{2}(t)=G(t) /(1-t)(4)$ is equal to

$$
\begin{aligned}
\text { const } \cdot & \sup _{\|G\|_{C}=1} \int_{-1}^{+1} g(t) S_{n-1}\left(w_{j}, G_{j}, t\right) \tilde{v}(t) d t \\
& \leqslant \text { const } \cdot \sup _{\|G\|_{C=1}}\left\|S_{n-1}\left(w_{j}, G_{j}\right)\right\|_{\tilde{v}, p} \\
& \leqslant \text { const } \cdot \sup _{\|h\|_{\tilde{i}, p}=1}\left\|S_{n-1}\left(w_{j}, h\right)\right\|_{\tilde{v}, p}
\end{aligned}
$$

but the last term is the norm of the linear operator $S_{n-1}\left(w_{j}, \cdot\right)$ considered as a mapping from $L_{\tilde{v}}^{p}$ into $L_{\tilde{v}}^{p}$.
(ii) Starting with (3) we must consider

$$
\begin{aligned}
\int_{-1}^{+1} & L_{n}\left(w, f^{*}, t\right)(1+t) S_{n-1}\left(w_{1}, \frac{g \tilde{v}}{w_{1}}, t\right) w(t) d t \\
& =\sum_{i=1}^{n} \lambda_{i}^{G}(w) f^{*}\left(\chi_{i}\right)\left(1-\chi_{i}^{2}\right)\left(1-\chi_{i}\right)^{-1} S_{n-1}\left(w_{1}, \frac{g \tilde{v}}{w_{1}}, \chi_{i}\right) .
\end{aligned}
$$

We use Nevai's theorem for $u(t)=(1-t)^{-1}$ and get the upper bound

$$
\text { const } \cdot \sup _{\|G\|_{c}=1} \int_{-1}^{+1} S_{n-1}\left(w_{1}, \frac{g \tilde{v}}{w_{1}}, t\right) G(t) \frac{w(t)}{1-t} d t
$$

which is equal to

$$
\text { const } \cdot \sup _{\|G\|_{c}=1} \int_{-1}^{1} g(t) S_{n-1}\left(w_{1}, G^{*}, t\right) \tilde{v}(t) d t
$$

with $G^{*}(t)=G(t) /(1-t)$ and this can be estimated as in (i).
(iii) This case has to be treated similarly to (ii).
(iv) In this case the integral in (3) becomes

$$
\sum_{i=1}^{n} \lambda_{i}^{G}(w)\left(1-\chi_{i}^{2}\right)^{-1} f\left(\chi_{i}\right)\left(1-\chi_{i}^{2}\right) S_{n-1}\left(w, \frac{g \tilde{v}}{w}, \chi_{i}\right)
$$

and with the help of Nevai's theorem for $u(t)=\left(1-t^{2}\right)^{-1}$ we get the upper bound

$$
\text { const } \cdot \sup _{\|G\|_{C}=1} \int_{-1}^{+1} L_{n}\left(w, f^{*}, t\right) G(t) \frac{w(t)}{1-t^{2}} d t
$$

This leads to the same result as in the other three cases.

Now the proof must be finished as the proof of [3, Theorem 1] using results of V. M. Badkov [2] on the uniform boundedness of the norm of $S_{n}(w, \cdot): L_{\tilde{v}}^{p} \rightarrow L_{\tilde{v}}^{p}$.

3. An Application

Put $p=1$ and $v \equiv 1$. Then it is immediately proven
Theorem 3. Let $Q_{n}^{*}(\alpha, \beta, \cdot)$ be the interpolatory quadrature formula, where the nodes are the zeros of $p(t)=\left(t^{2}-1\right) \cdot p_{n}(w(\alpha, \beta), t)$. Then

$$
\lim _{n \rightarrow \infty} Q_{n}^{*}(\alpha, \beta, f)=\int_{-1}^{+1} f(t) d t
$$

for all $f \in C[-1,+1]$, if $\max (\alpha, \beta)<7 / 2$.

References

1. R. Askey, Mean convergence of orthogonal series and Lagrange interpolation, Acta Math. Acad. Sci. Hungar. 23 (1972), 71-85.
2. V. M. Badkov, Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR-Sb. 24 (1974), No. 2, 223-256.
3. G. P. Nevai, Mean convergence of Lagrange interpolation, I, J. Approx. Theory 18 (1976), 363-377.
4. G. P. Neval, "Orthogonal Polynomials," Memoirs of the American Mathematical Society, No. 213, Providence, R.I., 1979.
5. J. F. Steffensen, "Interpolation," 2nd ed., reprinted, Chelsea, New York, 1965.
6. A. K. Varma and P. Vertesi, Some Erdös-Feldheim theorems on mean convergence of Lagrange interpolation, preprint, 1981.
7. P. Vertesi, Note on mean convergence of Lagrange interpolation, J. Approx. Theory 28 (1980), 30-35.
